W hat if you had access to a single test that could detect 3 different kinds of vector-borne bacteria all at the same time? Well, it looks like researchers out of North Carolina State University and Galaxy Labs have done just that.
Research led by Ricardo Maggi, Ed Breitschwerdt, and colleagues has led to the development of a new test utilizing a multiplex droplet digital PCR “BBB ddPCR” that can simultaneously detect the three B’s—Babesia, Bartonella and Borrelia from both the Lyme and relapsing fever complex. (Maggi et al., 2021)
Once this combined test is clinically validated and available for clinical use, it will lead to improved diagnostics for patients with Lyme and other vector-borne diseases.
Humans and animals are greatly affected by tick-borne diseases. Currently, 75% of all vector-borne disease cases reported in the U.S. are caused by ticks. And 82% of the tick-borne cases are due to Lyme disease. (Rosenberg et al., 2018)
Despite recent advancements for diagnostic testing for other illnesses, the CDC continues to recommend tests for Lyme and other tick-borne diseases that were designed more than three decades ago—and fall way short of what’s needed.
For example, the CDC-endorsed two-tier test for Lyme disease predates a full understanding of the immune response to Lyme disease. It has several technical limitations, including the inability to differentiate between active infection, past infection, and reinfection. (Branda et al., 2018; Schutzer et al., 2019)
The standard test combination also misses 89% of early infection (false-negatives), cannot detect all strains of disease-causing Borrelia, and suffers from cross-reactivity with other infectious diseases leading to false-positives. (Steere et al., 2008; Cook, Puri, 2016)
Early diagnosis of tick-borne diseases can save lives. Using advanced molecular detection techniques, these researchers have shown how an improved multiplex assay can more rapidly diagnose patients infected with multiple pathogens, speeding the delivery of life saving treatment.
“The ability to co-amplify multiple vector-borne pathogens within a single sample with high sensitivity will greatly enhance the efficiency and efficacy of clinical diagnostic testing, particularly of volume-limited or otherwise hard to obtain sample matrices,” the authors state……Join or login below to continue reading.